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ABSTRACT 

MULTIDIMENSIONAL NUMERICAL SIMULATION OF 
FLUID FLOW IN FRACTURED POROUS MEDIA 

T. N. Narasimhan 
Earth Sciences Division 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

Fluid flow in fractured porous media can be simulated with considerable 

ease and generality using an integral finite-difference method (IFDM). The 

three commonly used conceptualizations of fractured systems, namely, discrete 

fracture systems, equivalent porous media systems, and double- or composite-

porosity systems are all contained within the IFDM formulation. The theoret-

ical basis of the IFDM is briefly described and the method is compared and 

contrasted with the finite difference and the finite element methods. Six 

illustrative examples are provided to demonstrate the applicability of the 

method to fractures, with fixed or variable geometry, to advective-diffusive 

chemical transport in a fractured system and to a double-porosity system. 

INTRODUCTION 

At present there is considerable interest in the possibility of disposing 

of nuclear wastes in extremely low permeability geological environments such 

as those obtained in igneous and metamorphic rocks or in ancient argillaceous 

materials. Though lacking in primary porosity, these rocks are known to con-

tain fractures down to several kilometers below land surface. Moreover, the 

stress-relief accompanying the underground openings and the associated shafts 
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will also lead to the creation of artificial fractures that may extend to at 

least a distance of a few shaft or repository diameters. The fractures, which 

may have apertures as small as 1 to 10 microns, may, over a period of thou= 

sands of years, provide pathways for migrating groundwaters from the reposi­

tory to the biosphere. Long-term acceptability of deep waste-disposal sites 

is therefore very much dependent on our ability to simulate the evolution of 

the groundwater regimes in such fractured rock systems. 

Approaches to Modeling Fractured Systems 

Fractured rock systems of interest in radioactive waste disposal consist 

of extremely low permeability rocks (1o-9 to 10-4 darcies) intersected by one 

or more fracture sets. The fractures, whose permeability is directly related 

to their apertures, provide the main conduits for water movement with some 

diffusive leakage into the rock matrix. Modeling the flow of water under such 

conditions involves the simulation of a highly heterogeneous system with com­

plex geometry. Even with the current availability of powerful computers, a 

detailed handling of such systems requires capabilities of handling enormous 

quantities of data, not economically feasible at the present time except when 

the flow region is relatively small (e.g., the region immediately adjoining 

the repository). 

In general, three approaches have been proposed in the literature to 

handle fractured-porous systems. These are: 

1. Equivalent Porous Medium Approach: In this approach, the fractured 

system is grossly treated as an equivalent non-isotropic statistical continuum. 
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The tacit assumption is that physical quantities such as potential, porosity, 

pressure, and so on, are averaged over sufficiently large blocks of rock con­

taining a large number of fractures. Obviously, the sizes of such a represen­

tative block will increase with increased fracture spacing. Computations 

based on this model will, in general, be relevant only to field observations 

made with measuring devices with large characteristic lengths (e.g. wells with 

large open intervals). From a practical standpoint, there is general agree­

ment among many workers that the equivalent porosity model is a reasonable 

method to analyze the fluid flow regime far away from the repository. One of 

the serious drawbacks of this approach is that there is as yet no well-defined 

method for computing the gross, porous media parameters, even if the fracture 

details are completely prescribed. This is because the gross parameters are 

very much dependent on scale and there is reason to believe that the gross 

system may in general truly be anisotropic, rather than orthotropic as is 

commonly assumed in the literature. 

2. Double-Porosity Approach: The double-porosity approach was originally 

proposed by Barenblatt et al., 1960, to analyze flow in fractured-porous media. 

In this approach, the flow region is mathematically idealized as a complex of 

two interacting media, one representing the fissured-regime and the other 

representing the porous regime. The fissured regime is characterized by very 

high permeability and very low storage while the porous-block regime is charac­

terized by low permeability and high storage. Such a system may be described 

by two conservation equations, one for each aforesaid regime. These two equa­

tions are to be coupled by a fluid transfer term expressed as a nonlinear 
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source term, dependent on the potential difference between the regimes at the 

location of interest. This double-porosity model enabled the development of 

several useful analytical solutions for well-test analysis in the petroleum 

literature (e.g., Warren and Root, 1963; Odeh, 1965) for naturally fractured 

reservoirs. The double-porosity approach, or better still, the interacting, 

double-continuum approach is truly a mathematical approximation whose exact 

relation to physics is ill-defined. For example, the analytic solution of the 

double porosity system yields two values for potential at every point in the 

system, one for the fracture regime and one for the porous regime. How do 

these quantities relate to the actual physical measurement at the location? 

Moreover, the source-term which couples the two regimes is proportional to the 

difference in the two potentials through a coefficient whose physical signifi­

cance is not well-defined. Yet, when one is not interested in a detailed 

description of what happens within the reservoir, the above deficiencies can 

be overlooked and the double porosity system can be used as a practical tool 

for modeling and prediction. Such indeed is the case when one chooses to use 

this model for analyzing well-test data from naturally fractured reservoirs. 

The utility of the double-porosity model in regard to waste-isolation 

studies depends on the manner in which the model output is to be utilized. 

For example, for modeling chemical transport problems, the double-porosity 

model output will not be reliable since a fairly well-defined fluid flux field 

is a necessary input for solving the transport equation. Furthermore, it is 

not clear to this writer that the double-porosity concept is needed at all 

when one chooses to solve the over-all problem by numerical methods. As we 



shall see later, numerical models, developed directly from the basic integral 

equation, help not only in dispensing with hard~to-define internal boundary 

conditions, but also provide a great deal of flexibility in modeling any part 

of the flow region with any desired degree of fineness. Thus, in a numerical 

model of a fractured medium, the double-porosity model can be treated realis­

tically as a limiting case in which the porous blocks are discretized very 

coarsely. 
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3. The Discrete Fracture Approach: In this very general approach, the frac­

tures and the porous matrix are separately discretized into volume elements 

and the conservation equations are solved for each such volume element. A 

principal drawback to this approach is the amount of detail that is required 

as input and the accompanying effort involved in obtaining numerical solutions. 

Nevertheless, it appears that such a detailed effort is necessary to analyze 

the flow regime in the vicinity of the underground opening. Also, very little 

is known at present about the factors that govern the transformation of param-

eters from one scale to another In order to gain insight into the question 

of scale transformation, the discrete fracture model is a tool of fundamental 

necessity. 

Purpose and Scope 

The purpose of this paper is to present a general, multidimensional 

numerical model for simulating fluid flow in fractured porous media. The 

model is inherently sufficiently general to include the three approaches des­

cribed above as particular cases. Conceptual-theoretical discussions are 
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provided to develop the problem in an integrated fashion. Some numerical 

results are presented to substantiate the theoretical arguments. In scope, 

the paper is restricted to isothermal fluid flow. 

'l'HEORY 

Conceptual Framework 

The basic law of mass conservation is applicable to any elemental volume 

~ of the flow region, whether that elemental volume comprises a portion of a 

fracture, a portion of the rock matrix, or even a combination of both. Accord-

ing to the law of mass conservation, the algebraic sum of the fluxes crossing 

the surface enclosing volume element and the arbitrary withdrawal of fluids 

from ~ (the sources) equals the rate of change of fluid mass in ~~ thus, 

= 3Mw,R, 
at ( 1 ) 

where pt is average fluid density within 2; G~ is the volumetric rate of fluid 

generation from 2; p is fluid density at df; K is the hydraulic conductivity 

at di'; <j> = z + ljJ is the fluid potential where z is elevation and ljJ is pressure 

+ 
head; n is unit outernonnal to df; M n is the mass of water contained in 2 

WvJV 

and rt is the closed surface bounding the volume element 2· Should the system 

be fully saturated with water, and should the fluid potential vary smoothly 

over the volume element, then M can be related to the average pressure head 
w,~ 

~2 at an interior nodal point in the system by the relation, 
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(2) 

and 
(3) 

where M:,~ is the mass content of ~ at ~~ = O, V~is the volume of ~ and S81 ~ 
is the specific storage of the material in ~ given by 

(4) 

where g is acceleration due to gravity, n is porosity, a is compressibility of 

water and m n is the coefficient of volume change (rate of change of bulk v,N 

volume with external pressure) of the material in element ~. Additionally, if 

we neglect time-dependent changes in elevation of the nodal points due to very 

small deformations, then, ~~~ = ~~~· Moreover, r~ may either be completely 

interior to region (f 0 ) or portions of it may coincide with the external N,m 

bounding surface of the system (f~,b). Hence we may rewrite (1) as 

where M01 ~ = dMw/d~ = p~v~ss,~ is the fluid mass capacity of the volume 

element ~~ defined as the change in mass of water in ~ due to a unit change 

in head under conditions of drainage. In heat-flow problems, the analagous 

quantity is the heat capacity of an arbitrary mass of material. 

(5) 

The integral representation in (5) may be applied to any volume element, 

finite or infinitesimal. If one applies (5) to an infinitesimal element and 

divides both sides through by V~, the result is the well-known differential 

expression, 
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(6) 

However, since our purpose is to develop a numerical model and since the 

numerical approach consists in applying the conservation equation to finite 

subdomains of the flow region, we may directly proceed from (5) and write down 

the discretized equations. We will not follow the redundant step of integrat= 

ing (6) to obtain (5). Note also that in (5) the second integral on the right-

hand side incorporates the known boundary conditions either in the form of 

+ 
known ~ (prescribed potential condition) or in the form of known kV~·n (pre-

scribed flux condition). That is, (5) imbeds the boundary condition into the 

conservation statement. 

For purposes of numerical computations, if one chooses the volume element 

to be sufficiently small so that (2) is satisfied at all times with reference 

to ~t measured at the representative nodal point, then one may directly apply 

(5) tot. Also, if rt and tare divided into a finite number of segments, 

then, the integrals may be replaced by finite sums and the differentials by 

finite differences to obtain, 

L ,( 7) 

m b 

in which m denotes all interior surface segments and b denotes all exterior 

surface segments. Note that (7) applies to any arbitrary volume element and 

hence it is an invariant statement. As shown in Fig. 1, (7) may be applied 
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a portion of a fracture or a portion of a porous medium. When (7) is applied 

to a fracture (Fig. 1B), then, for the segment of r£ representing the fracture-

rock interface (Aff in Fig. 1B) one has to use Kf in applying (7) where ,r ,r 

K is the hydraulic conductivity of the rock-fracture interface. It is of 
f,r 

interest to note here that in the double-porosity model, the flux across this 

surface is treated as a source term included in G~. This source term is the 

internal boundary condition linking the fissure regime and the porous regime. 

Thus 8 in the double-porosity model, the term (p~K~m V~ • ndf) for the frac= 

ture rock interface is replaced by an equivalent term p~a."'Kr(~r - ~~) where 

~r is the average potential in the block, ~t is the potential in the fracture, 

K0 = ~ in the matrix hydraulic conductivity and a.* is a function of the sur-
"'m r 

face area of the fracture interface and a characteristic length of the block. 

As we shall see later, the model described in this paper is flexible enough to 

handle either of the two methods of handling the fracture rock interface. 

It is not difficult to see in this regard that in a rock system with 

irregular fracture distributions, a.* should vary widely from one location to 

another in the flow region. Yet the double-porosity model assumes this factor 

(or a factor a. related to a* by a.= a.*/v) be constant everywhere in the flow 

:cegion. Obviously, the double-porosity approach is extremely simplistic for 

naturally fractured systems. Conversely, estimates of a. obtained indirectly 

from interpretation of well tests can only be model coefficients with very 

limited use. Application of the a to a detailed modeling of the reservoir can 

lead to unrealistic estimates of fluid potentials and fluxes over the flow 

region. 
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The Chosen Approach 

In the present work we shall choose the approach of directly applying (7) 

to well-defined subdomains of the flow region. Additionally, we shall choose 

to evaluate the quantity (V~ • ~) at each interface between volume elements by 

the finite difference approximation 

where 0 0 is the distance between the nodal points .il, and m. Equation (8) 
k 1 m 

presupposes that the line joining .il, and m coincides with the normal to the 

interface ~ro • Figure 2 is a sketch of a volume element .il, of arbitrary 
N,m 

{8) 

shape in the rock matrix which communicates with other rock or fracture ele-

ments. In Fig. 2, D0 = d 0 • + d . , where d 0 • and d . denote, respective-N,m k 1 l m,1 k 1 1 m,1 

ly, perpendicular distances from nodes .il, and m to the interface 6f 0 • 
N,m 

This approach has been termed the Integral Finite Difference Method (IFDM; 

Narasimhan and Witherspoon, 1976) since this method directly evaluates the sur-

face integrals and the associated volume averages and since it uses the finite 

difference approach for evaluating gradients of potential. This approach, 

which has been known since the early SO's (MacNeal, 1953; Dusinberre, 1961), 

was translated into a very powerful computer program called TRUMP by Edwards 

(1972). Many of the ideas inherent in the following discussions have origi-

nated from Edwards. 



'l'he discretized IFD equations now become, 

m 
Um 

b 

Ll<jl R, 
M --- (R, = 1, 2, 3, ••• , L) 

c,R. Lit 

where U is the conductance of the interior surface Llfn , given by 
Jl,,m 1\,,m 

u = Jl.,m 

PKo !if" 1\,m 1\,,m 
D 

R.,m 

uJI.,b is the conductance of the external surface segment, Llr.R.,b given by 

uJI.,b 

11 

( 9) 

( 10) 

( 11) 

L is the total number of nodes in the flow region for which Ll<jJJI, is to be com-

puted and m denotes a volume element having an interface with volume element t. 

Rearranging terms in (9), we get 

=M 
c,J/, lit 

Equations (9) and (12) are central to the IFDM. 

u <P + t,m m 

(12) 

Apart from the source terms 

and the material properties, a key task in the IFDM is to provide the geometric 

quantities DJI,m' Af 5/,,m and VJI, that are needed to evaluate ut,m' u 2,b and Mc,t" 

In the IFI»l these quantities are provided directly as input, for each inter-

face and volume element in the flow region. Equation (9) is in a form very 
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convenient for writing the iterative procedure used in the computer program 

TRUMP, and its derivatives while (12) is convenient to express the equation 

in a global matrix form for direct solution purposes. We shall return to (12) 

later when comparing IFDM with other methods. 

Marching in the Time Domain 

In (9) ~m and ~~ are both functions of 6t and we have to use appropriate 

- -mean values, ~m and ~~ such that 

t +At 

u <i - cj>JI,) ~Jo u Jl, ( <P - <j>.f?,)dt .f?.m m ,m m 
(13) 

t 
0 

and 
t +6t 

0 

u f(,b ( <i>b - ~.I(,) =f u~ ,b < <Pb - <j>R.)dt 

t 

( 14) 

0 

To achieve this (Narasimhan et al., 1978, Edwards, 1972), express these mean 

values by 

(15) 

0 

cj> + AA~ m m 
( 16) 

0 0 
where <P~ and cj>m are the initial values corresponding to time t

0 
and 0 ~ A ~ 1 

is a weighting factor. For A. = 0, leads to a set of explicit expressions for 

the A<j>'s. However, the explicit expression for any element ~ will violate 

maximum principle when 6t exceeds the critical time constant for the element. 

This critical value, called a stable time-step, is the ratio of capacity of ~ 
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to the sum of its surface conductance, 

At = --------~~--------stab,Ji, ( 17) 

u + ~ 
Jl,,m L 

m b 

for a stable solution, therefore, when At> At b , we substitute (15) and 
sta ,p 

(16) into (9) to arrive at an implicit set of equations (simultaneous equa-

tions). For convenience, we rearrange terms to express A~J/, in terms of an 

explicit part and an implicit part. Thus, 

LHp Jl. ,explicit + 
>.At {- ~ ut,bMt + 2 0~m(1;0m- /10~)} A~J/, = 

M c,JI, 
m 

( 18) 

where 

L1<i>x.,explicit == (19) 

We now reason that we could first compute the A~ 
1

. . values for every 
Jl,,exp J..CJ..t 

Jl. in the flow region and then evaluate the second quantity on the left-hand 

side of (18) only for those Jl. for which At> At b n• This has been called 
sta ,;v 

the mixed explicit-implicit approach. In applying (18) thus, if, for a given 

J/, and m 

but fit < At b sta ,m 

then, we replace 

U 0 (A~ - Li~ 0 ) by U n ( L'.<J> l . . - L'.<J> n ) • ;v,m m ;v ;v,m m,exp J..CJ..t ;v 

'£he mixed explicit-implicit approach thus does the implicit calculations only 

in those parts of the flow region where stability is violated. In other words, 

if isolated areas of instability are separated in a flow region by areas of 
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stability, then the unstable regions are essentially decoupled from one another 

within each time step. Under these circumstances, the mixed explicit-implicit 

strategy helps us to partition the large global matrix and obtain solution by 

solving several small submatrices. For details of this strategy see Edwards 

(1972), Narasimhan et al (1978) 1 and Neuman and Narasimhan (1977). 

Computer Programs 

The basic IFD model was originally developed by Edwards (1972) for heat 

transport with conduction, convection, and radiation and incorporated into a 

program called TRUMP. Subsequently 8 this model was adapted at the Lawrence 

Berkeley Laboratory to solve porous media fluid flow problems. These programs 

include: TRUST, for solving saturated-unsaturated flow in deformable media 

(Narasimhan et al., 1978); TERZAGI, for saturated flow in deformable media; 

CCC, for heat and water transport in deformable media {Lippmann et al., 1977); 

and SHAFT79, for two-phase transient flow of heat and mass (Pruess et al., 

1979). The discussions that follow in regard to simulating fractures are 

applicable to all the aforesaid programs subject to suitable modifications. 

However 1 the actual applications that follow have been carried out with 

TERZAGI, except for one case analyzed with TRUMP. 

Simulation of Fractured Rock Systems 

We have already stated that there are three different ways in which frac­

tured rock systems can be simulated. These include: systems with discrete 

fractures; double-porosity systems; and equivalent porous media systems. The 

last of these does not require any further attention since literature is volu­

minous on modeling porous systems. We will now consider the first two cases. 
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Syste~ms with discrete fractures: In modeling a porous medium with dis-

crete fractures with the IFDM, we recognize that (9) or (12) are very general 

in nature and can be applied to an elemental volume, either in a fracture or 

in the rock matrix, as in Fig. 2. Computationally, a major difference between 

a matrix element and a fracture element is that the former is usually charac-

terized by higher capacities (M 
0

) and lower hydraulic conductivities and 
c,N 

hence large time constants. The latter, on the other hand, are usually char-

acterized by very low capacities and very high hydraulic conductivities and 

hence very small time constants. 

Note from (9) or (12) that in setting up the simultaneous equations, the 

quantities needing greatest attention in computation are the conductances U Jl,,m 

and uJI,,b' since pJ/,GJ/, and Mc,JI, are directly provided as input. For computing • 

the conductances proper, equations (10) and (11) one needs the hydraulic con-

ductivity at the interface K0 , the distance between nodal points D0 , and 
N,m N,m 

the surface area ~r,, • In particular, handling the conductance between a N,m 

fracture and a matrix element is worth discussing. Because of the much higher 

hydraulic conductivity of the fractures, the potential gradients along the 

fracture will be relatively small compared to that within the block and hence, 

a single fracture element may be connected to one or more rock elements along 

a given fracture surface. Moreover, since the gradient of potential across 

the fracture opening can be neglected, the fracture rock conductance, Uf , is 
,r 

is determined by 

u = f,r 

pK ~rf r ,r 
d . r,2 
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where K is the hydraulic conductivity of the rock matrix, ~rf is the inter-r ,r 

face area and d . is the distance from the nodal point of the rock element to 
r,J. 

the interface ~rf • ,r 

It is now appropriate to discuss the fracture parameters. Insofar as 

adjoining fracture elements are concerned, we need to use the hydraulic 

conductivity of the fracture, Kf in computing conductance. It is now well 

established that Kf is related to 2b, the fracture aperture. Experimental 

evidence (Witherspoon et al., 1980) suggests that laminar fluid flow in a 

fracture can be very closely approximated by the relation, 

where Qf is the flux in the x direction, 2b is the fracture aperture, ~ is 

(21) 

the coefficient of viscosity and ~~f is the length of the fracture trace on 

the plane across which Qf is measured. For the sake of a definition, if we 

3 
let ~~f = 1 and a~;ax = 1, then, Qf = (2b) pg/12~. Hence the expression 

"cubic law" is used to characterize fluid flow in fractures. Realistically, 

therefore, we could define the fracture hydraulic conductivity to be 

2 
. - (2b) p~ 
Kf - 12~ (22) 

Finally, we discuss the meaning of the storage parameter for a fracture element. 

For a fracture element ~, if we neglect the compressibility of the rock grains, 

the quantity of water released from storage per unit change in pressure head 

is given by 

d(V fp) v, 
( 23) 



where V f is the volume of voids in the fracture element 1· However, for v, 

convenience, we may normalize vv,f with reference either to bulk volume vb,f 

or solid volume V f of the fracture element. If we are to normalize (23) 
s, :. rO «~·- . \{ ;..,) 

(. ,f; 
with reference to vb,f and recognize that .~ = pg~, where p is pressure, we 

obtain, 
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(24) 

where nf = vv,f/Vb,f is "porosity" of the fracture element and mv,f = -dn/dp 

is the coefficient of volume change [Lambe and Whitman, 1969] of the fracture 

element. 

Or, as has been done is TERZAGI in which the volume element is always 

defined as having the same volume of incompressible solids, it is more conven-

ient to normalize (23) with reference to vs,f• Thus, 

M = v fpg[efs + a fl (25) c,1 s, v, 

where ef is the void ratio of the fracture and av,f = -def/dp is the coeffi­

cient of compressibility for the fracture. Note that whether one uses Vb with 

n and m 1 or one uses V with e and a , the final quantity M is the same as 
v s v c, 1 

long as one is consistent. 

We note here that in the case of a volume element in a fracture, the 

element itself is made only of the voids. However, for convenience we may 

associate any arbitrary solid volume V with the fracture and define a ficti-
s,f 

tious bulk volume vb,f = V + V for the fracture element. s,f v,f Since V f is s, 

is arbitrarily chosen, we can, in fact choose it in such a fashion that ef 

becomes exactly equal to 2b, the fracture aperture. This can be achieved by 

letting vs,f = Aftimes unit thickness, where Af is the surface area of the 



18 

fracture wall. In this case 6 

(Af)(2b) 

ef = Af(1) 2b 

If we use this procedure for a in (25) we may use experimental data 
v,f 

(26) 

directly on fracture closure as a function of stress, i.e., a = -d(2b)/dp. 
v,f 

It is apparent from the foregoing that once we have defined the appro-

priate conductances for fracture-fracture 6 fracture-rock and rock-rock inter-

faces and have defined the physically appropriate storage parameters for 

volume elements in the fracture or in the rock 6 the solution of the discrete 

fracture problem merely reduces to solving (9) or (12) through direct or iter-

ative techniques. 

Systems idealized by double porosity: In the double porosity approach 

all the fractures are idealized into one continuum and all matrix blocks into 

another. For an intersecting system of fractures the physical significance of 

the fracture continuum is difficult to comprehend. For purposes of elucida-

tion 6 therefore 6 it is best to discuss the relation of the double porosity 

model to a simple idealized system of horizontal fractures as shown in Fig. 3. 

Consider a system of I horizontal fractures with spacing s. The thickness, H, 

of this system is given by H = IS. It is clear that in this system water moves 

horizontally in the fractures and water drains vertically from the intervening 

blocks to the fractures bounding the matrix. The system is bounded above and 

below by impermeable boundaries. We will now replace this system by two inter-

acting continua, each of thickness H, one representing the flow phenomenon in 
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the fractured milieu and the other, that in the matrix milieu. Obviously, the 

fracture continuum is characterized only by horizontal flows while the matrix 

continurua only by vertical flows. 

If we assume that flow in the fracture obeys the cubic law, then the 

total horizontal flux in the horizontal direction in the layer equals I times 

the flux in each fracture. We may therefore define the average hydraulic con-

* ductivity, Kf, of the fracture continuum by, 

3 
I(2b) pg 

12llH 
(27) 

* Similarly if S is the storativity for one fracture, then, S f' the average 
s, f s, 

storativity, for the fracture continuum is, 

* 
I( ( 2b) ) 

s 
s,f H 

(28) = -~.:...;;;;.. __ _ 

* Since the fracture aperture is far smaller than the fracture spacing, K ~ K 
r r 

* and S 
s,r 

* * = S , where K and S are the average hydraulic conductivities 
s,r r s,r 

and storativities of the rock continuum. 

Consider an area Af at the interface between a fracture and an adjoining 

matrix block. The flux from the block to the fracture is given by 

and the total flux from blocks to fractures is given by 2IQf • In (29), ,r 

* * ~r and ~f are average potentials in the element of each continuum. 
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If we consider two volume elements at a given location, one in the frac-

ture continuum and one in the porous continuum, each element having an area of 

* * cross section Af and height H, then Vf = Vm = AfH. It is assumed, in formu-

lating the differential equations of the double porosity model, that the two 

volume elements of identical bulk volume are centered at the same location in 

space. For each of these volume elements we may now write a conservation 

equation. 

Fracture continuum element 

Rock continuum element 

* = PV S r s 
r 

* * * 

(30) 

(31) 

* Noting that V 
r 

= Vf = AfH and dividing through by vf in (30) and vr in (31) 

and letting the elements tend to zero is the limit, we now obtain the differ= 

ential equation, 

*+ * * * * -div pK V~ + paK (~ - ~) 
f f r r f 

(32) 

* * * * -paK ( $ - ~f) r r 
= pS 

s,r 
( 3 3) 

where 

2I 4 
a.= 

0.5SH 
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since H = IS. Obviously a is a factor controlled by the spacing and the 

specific surface of the rock blocks. Note also that in the fracture continuum 

water flows within the continuum as well as across an imaginary interface with 

the rock continuum. Hence, (32) has a source term as well as a divergence 

term on the left hand side. However, it is assumed that, due to the strong 

permeability contrast between the fracture and the blocks, flow of water 

within the blocks is restricted to lines normal to fracture-block interfaces. 

Hence, in (32) the divergence term is absent. 

In view of (30) and {31) we may now proceed to apply (9) to a double-

porosity system. First, we discretize the flow region into ~ = 1, 2, 3, ••• L 

* subdomains to represent the elements of the fracture continuum with Kf and 

* S f defined as in (27) and (28). For each of these subdomains we shall 
s, 

provide all required input data such as G~, interior connection data, exterior 

connection data and bulk volumes so that one equation such as (9) can be 

developed for each of the L elements. Simultaneously we assume that at the 

location of each~= 1,2,3, ••• L fracture continuum element there exists a 

matrix continuum element j = 1, 2, 3, ••• L such that V 
~ 

V. for~= j. In 
J 

order to couple the two continua we will now connect, for each ~ j, the 

fracture continuum element ~ with the matrix continuum element j in such a 

fashion that the conductance U . is given by, 
~,) 

u 
J(,,j 

* IpK E!f a • 
r "''J 
d .. 
J,~ 

* = pV aK 
r r 

(34) 
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We thus end up with conservation equations for 2L volume elements in all, with 

one equation for each fracture-continuum and matrix-continuum element. Note 

that the time-constant for the respective elements shall be given by 

~t b . = sta ,x, 
u" . "''] 

(35) 

where ~~ m are fracture continuum elements, j is a matrix continuum element, 

and j == 5/,; and 

11t 
stab,j 

* v s r s,r 
2U 0 , 

"'') 

where j is a fracture continuum elements, !/, is a matrix continuum element, 

and j !/,. 

(36) 

Since the IFDM is so structured that the geometric quantities (~fn and ,.,,m 

D ) needed for computing the conductances are directly provided as input Jl,,m 

data, the handling of V a needed as input for computing Uu . in (34) poses no 
r "'' J 

special problem. Also, since the 2L simultaneous equations are formulated, 

they can be solved by the mixed explicit-implicit method. Indeed, since the 

double-porosity model .gives rise to a stiff matrix (due to the marked differ-

ences in the time-constants between the fracture-continuum elements and the 

matrix-continuum elements), the mixed explicit-implicit method is particularly 

desirable for solution. 
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Comp~~:ci.son of IFDM with Other Approaches 

described the utility of the IFD approach to handle a variety of 

problems, it is of interest to see how this approach corn= 

pares with other numerical techniques, notably, the conventional finite differ­

ence met:hod (FDM) and the finite element method (FEM). 

.~I~E'~l~~1~~~~~F~DM~: The basic difference between these two approaches is that 

lat:t;ex: is applied specifically to volume elements with faces perpendicular 

t.o the coordinate axes while the former is applied in general to arbitrarily 

elements. The reason for this is that the FDM seeks to directly approxi= 

partial differential equation, which includes second derivatives of 

in space.. Note that the partial differential equation expresses the 

conservation law per unit volume of the volume element. This volume norrnali-

coupled with the regular shape of the volume element helps obtain the 

sec\'md derivatives in space. The IFDM, however, chooses not to use the volume­

normalization procedure and expresses the conservation law for an arbitrary 

volmne element. Yet, if one applies the IFDM to a mesh involving regularly= 

volume elements, then the IFDM and FDM equations shall be identical 

for division by the bulk volume. Thus, the FDM may be treated as a 

case of the IFDM. 

IFa~ and the FEM: The conceptual similarity between these two techniques 

lie in ·the fact that both are integral methods in which intensive properties 

such .ow potential are expressed as averages over finite volume elements. How= 

evex, these two methods differ (a) in the manner of carrying out integration 
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operations and (b) in the approach employed for evaluating gradients of poten-

tials. In order to compare the integration procedures adopted in the IFDM and 

the FEM, it is instructive to recall equations (9) and (12) that are central 

to the IFDM. For convenience, we may write (12) in matrix notation as 

where 

and 

L 

I 
m=1 

Ao ,.,,m u Jl,,m 

(37) 

In (37) the A
0 

's denote the conductances between elements Ji and m. If an ,.,,m 

element Ji communicates with an element m across some common interface then 

AX,,m > 0. Or else Ai,m = o. Also, pi, Vf(,, Ss, )(, and BP are known, while ~m 

is a function of initial conditions and the ~~i is the variable to be solved 

for. In setting up (37) a xnajor task is to evaluate the coefficients A0 and ,.,,m 

vx, in order to set up the equations. Note that A0 includes in itself ,.,,m 

certain geometric quantities in addition to the material properties. In the 

handling of the geometric quantities inherent in An IFDM and FEM choose ,.,,m 

different approaches. Thus, the IFDM explicitly defines each volume element 

by defining its bounding surface segments and directly provides the required 

geometric inputs bf and D
0 

required for computing An • On the other X,,m ,.,,m ,.,,m 
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hand, the FEM, as it is commonly employed, chooses an indirect approach to 

achieve the same purpose. In the FEM, the geometric inputs consist of the 

coordinates of the nodal points as well as a description of the connectivity 

between specific nodal points. From this information the geometric quantities 

inherent in A~,m are generated through a process of weighted volume integra­

tion. A consequence of this approach is that one avoids the need to explicit= 

ly describe the surface segments ~rt,m between communicative volume elements. 

The volume elements are implicitly described, as it were. While this appears 

to be desirable in that one bypasses the need quantitatively for describing 

surface segments, the volume integration leads to a different type of computa­

tional requirement. That is, the volume integration requires the differential 

volume element of integration dV to have a simple geometrical shape such as a 

triangle, a rectangle, a toroid, a tetrahedron, or a parallelipiped. As a 

result, the integration in the volume integral has to be expressed with refer­

ence to a specific coordinate system. In comparison, the IFDM evaluates each 

conductance term locally in a single one-dimensional form and hence is indepen­

dent of any coordinate system. Thus, an important difference between the FEM 

and the IFDM is that in the former conductances are computed through a process 

of volume integration, while in the latter the conductances are computed dir= 

ectly as a product of the required input data. While it would appear that the 

latter may require greater input effort, it must be stated that an ability to 

directly prescribe conductances in a simple fashion is extremely helpful in 

handling certain special cases. For example, such an ability is of help in 

connecting a well or a single-fracture element to several matrix elements. 
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Although one could handle this with the finite element method (Narasimhan et 

al., 1978) there is an extra effort involved in implementing this with the FEM. 

Moreover, one could argue that by following the IFDM approach one essentially 

removes the geometric aspects from the mainstream of calculations and in, cer­

tain cases, the geometric quantities could be computed with any desired degree 

of precision before one sets out to solve the conservation equations. 

Apart from the integration aspect, the major difference between the IFDM 

and the F&~ consists in the manner in which spatial gradients of potential are 

evaluated. In fact, it is in regard to this that one should really exercise 

judgement in choosing between the IFDM and the FEM for handling any given 

class of problems. As discussed by Narasimhan and Witherspoon (1976), the 

IFDM employs a simple finite difference approximation for measuring gradients. 

This demands that for measuring gradient along any given direction, one simply 

computes the slope in that direction. It follows that the finite difference 

approximation is capable of giving only one gradient measurement at a time. 

Instead, in the FEM, an equation is set up for the variation potential 

within a region bounded by 3 or more nodal points and gradients are evaluated 

at any point and in any given direction by partially differentiating the sur­

face fitting the potential variation. Herein lies the unique power of the FEM, 

which is especially useful when application of Darcy's law at an arbitrarily 

oriented surface in an anisotropic medium requires gradient of potential in 

more than one direction. Even here one could argue that one could interpolate 

the required additional gradients from associated finite difference gradients. 
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However, an added advantage of the finite element approach is that by choosing 

a sufficiently large number of nodal points to fit the equation of the varia­

tion in potential, one could effectively introduce higher order terms in the 

expression for gradient, presumably increasing the accuracy of the evaluated 

gradients. Whether these higher order terms (which, incidentally lead to 

increased computational effort) lead ultimately to highly accurate solutions 

in all cases has not yet been firmly established, particularly for transient 

problems. 

In summary, therefore, the differences between the IFDM and the FEM are 

limited to certain methods of implementing geometric operations. Awareness 

of these differences show that each of these methods offer unique flexibility 

and power to handle certain classes of problems. Both of them, used properly, 

can give results of comparable accuracy. For systems with isotropic materials 

or with very general three-dimensional configurations, the IFDM provides a 

model capable of handling complex geometries and variations in symmetry within 

the flow region. For systems with arbitrarily varying anisotropy or systems 

in which the mesh deforms in time, the FEM provides flexibility of computa­

tions. Indeed, it is possible, in principle, to combine these two methods of 

handling geometry into a well-organized, single computer program so that with­

in the same flow region each method could be employed as needed for maximum 

efficiency. 
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A BRIEF DESCRIPTION OF PROGRAM TERZAGI 

Before proceeding to substantiate the preceding theoretical discussions 

with illustrative examples, it is pertinent here to briefly describe the input 

organization of program TERZAGI. The input data of this one-, two-, or three­

dimensional IFD program is organized into blocks, each block handling one 

category of information: control parameters (Block 1); material properties 

(Block 2); fluid properties (Block 3); volume element geometries (Block 4); 

internal surface connections (Block 5); external surface connections (Block 6); 

boundary potentials (Block 7); variable sources (Block 8); and initial condi­

tions, constant sources and preconsolidation pressures (Block 9). While a de­

tailed description of the program is out of place here, the following aspects 

should prove to be of interest to the reader: 

o The solution is started with a small time-step and the time-step is 

increased gradually by not more than a factor of 2 at a time, depending on 

the progress of solution. Should the convergence be slow or the nonlinear 

parameters change too rapidly, the time-step is automatically cut down. If 

desired, the time-step can be manually controlled. 

o The implicit solution process is achieved by a point-iterative scheme 

with an acceleration factor. The implicit weighing factor A is varied during 

the solution from 0.57 to 1 depending on the maximum rate of change of poten­

tial, in order to minimize time integration errors. Options are available to 

override this by using forward-, central- or backward differencing modes. 
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o The required material properties include void ratio, effective stress, 

coefficient of compressibility, preconsolidation stress, absolute permeability, 

specific storage, etc. Some of this data could be mutually exclusive. The re­

quired fluid properties include fluid viscosity, density, and compressibility. 

o The required volume element properties include bulk volume, type of 

material contained, and average elevation. 

o The required data for interior surface connections include the nodal 

point designations on either side of the interface, the distance between the 

nodal points, and the magnitude of the surface area. 

o Material properties as well as boundary potentials and sources can all 

be functions of time or potential. 

o The model uses the simple effective stress principle that change in 

effective stress is equal and opposite in sign to change in pore pressure. 

APPLICATION TO SOME FRACTURED SYSTEMS 

We will now present some illustrative examples on the application of the 

IFDM to simulate fluid flow in fractured media. The list of these examples is 

as follows: 

Porous Medium with Discrete Fractures: (1) Flow to a well intercepting 

a single horizontal fracture; (2) Flow to a well intercepting a single ver­

tical fracture; (3) Pulse test in a well intercepting an inclined fracture; 

(4) Simulation of a hydraulic fracturing experiment; (5) Advective-diffusive 

transport in a fractured system with spherical particles. 
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Double Porosity Medium: (6) Flow to a well intercepting a system of 

horizontal fractures separated by porous blocks. 

1. Flow to a well intercepting a single horizontal fracture. Consider a 

well of finite radius, rw, fully piercing an aquifer with a horizontal frac­

ture of radius rf and width w (=2b). The well pumps at a constant rate Q, 

starting with hydrostatic initial conditions. The problem is to predict the 

evolution of fluid potential around the well. Gringarten and Ramey (1974) 

solved this problem analytically and obtained a solution assuming that the 

fracture is infinitely conducting and that the rate of flux is constant 

throughout the fracture. Furthermore, the presence of the well was ignored 

and the fracture was considered to be a discoidal source. 

Bodvarsson and Narasimhan (manuscript under preparation) have studied a 

class of well-flow problems involving a horizontal fracture. The geometry of 

the system studied by them is given in Fig. 4. As a first step in their study 

they solved the problem of Gringarten and Ramey using the IFDM program TERZAGI. 

A comparison of their results with the analytic solution are presented (Fig. 5) 

in terms of the dimensionless time T0f = Krt/Ss,rr2 and dimensionless fracture 

pressure P0 = (2nKrh~~)/Q, where Kr is the hydraulic conductivity of the 

aquifer, h is the aquifer thickness, ss,r is specific storage of the aquifer, 

and ~~ is the drawdown is potential in the fracture. As may be seen the agree­

ment is excellent. 

In a series of subsequent runs, the study was extended to finite­

conductivity fractures in the presence of a realistic wellbore, within which 



fluid level changes with fluid production. The results of the studies (for 

which no analytical solution is available) is given in Fig. 6 in the form of 

a set of type curves. 

2. Flow to a well intercepting a single vertical fracture. Narasimhan and 
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Palen (1979) studied the problem of fluid flow to a well intercepting a single 

vertical fracture using the program TERZAGI. Both the well and the fracture 

fully pierce the aquifer. The geometry of the problem is given in Fig. 7. 

Analytical solutions have been presented in the literature for infinite con­

ductivity (Gringarten et al., 1974) as well as for finite conductivity ver­

tical fractures (Cinco-Ley et al., 1978). To validate their numerical model, 

Narasimhan and Palen used a-mesh as given in Fig. 8. As shown in Fig. 9, they 

obtained excellent agreement with the analytical results of Cinco-Ley et al. 

(1978). The small departures for early time results for Cr 1 and cr = 0.2 

are primarily due to wellbore storage effects, not considered in the analytical 

solution. The small departures for TDf > 8 x 102 observed with Cr = 0.2 or 

Cr = 1.0 are due to the closed external boundaries simulated in the numerical 

model. 

The numerical model is especially suited for simulating deformable frac­

tures for which fracture permeability varies with fracture aperture. This 

problem is somewhat difficult to handle analytically due to the nonlinearity 

involved. The results of four cases of flow within a deformable fracture are 

presented in Fig. 10. 
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In Fig. 10, CUrve 1 relates to a deformable fracture with an initial 

aperture w = 1 mm and xf = 10 m. The fracture deformability, quantified by 

av,f = -def/dp = -d(2b)/~, is assumed to be 3.28 x 1o-1° pascal-1 and frac­

ture permeability is allowed to vary with aperture according to the cubic law. 

We will use this curve to be the standard against which we shall compare the 

remaining three cases. 

Curve 2 represents the case in which all factors are the same as in 

Curve 1, but Kf is assumed to be constant, corresponding to the initial 

aperture of 1 mm and independent of fracture aperture. As one would expect, 

Curve 2 shows lesser values of P0 th~n Curve 1. Curve 3 incorporates the 

effect of a 0.1 m-radius well into the problem relating to Curve 1. The unit 

slope for Tof < 0.2 represents withdrawal of fluid from storage. As is to be 

expected, for Tof ) 10, Curve 3 tends to merge gradually with Curve 1. 

CUrve 4 relates to a problem which was designed to study the effect of 

fracture compressibility on the pressure transient. In this case the fracture 

compressibility, av,f' was increased by 48 per cent from 3.28 x 1o-10 Pa-1. 

As seen from the figure, this solution begins to depart makedly from Curve 1 

for Tof > 1.0. The results show that the pressure transient is extremely 

sensitive to fracture compressibility of deformable fractures. 

3. Pulse-test in a well intercepting an inclined fracture. For studying 

transient fluid flow in tight fractures, the method of pulse-testing is of 

interest (Wang et al., 1978). Unlike the conventional well test, the pulse 

test consists in packing of an interval of the formation, charging the well 
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with a pulse of water at a pressure higher than the formation pressure and 

letting the pressure decay in the well as a function of time. Analytic solu­

tion ·to this problem with respect to a horizontal fracture in a tight rock has 

been discussed by Wang et al. Sirisak Juprasert (1979; personal communication) 

numerically studied the pulse-test problem for an inclined fracture using pro­

gram TERZAGI. A major effort in this regard was to develop an IFDM mesh with 

associated geometric quantities. As shown in Fig. 11, the fracture plane is 

divided into a number of volume elements with the elements assuming radial 

shapes close to the well. In the immediate vicinity of the well elliptically 

shaped volume elements were designed to account for the fact that the well 

pierces the fracture plane in an oblique fashion. Using the mesh shown in 

Fig. 11, a number of runs were made with various fracture inclinations. 

Results from three of these runs are presented in Fig. 12. The results 

indicate that with higher fracture inclination, the pressure pulse dissipates 

faster in the wellbore. Conversely, if one were to match data from an 

inclined fracture system against the horizontal fracture solution, one would 

overestimate the hydraulic conductivity of the fracture. 

4. Simulation of a hydraulic fracturing experiment. Since the late 1950's 

hydraulic fracturing of in situ rocks has been extensively used to stimulate 

oil and gas reservoirs through the creation of massive hydraulic fractures 

extending up to several hundred meters from the stimulated well. On a smaller 

scale, hydraulic fracturing experiments are also used to determine in situ 

rock stresses (e.g. Haimson and Fairhurst, 1970). 
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Palen (1980) adapted the TERZAGI model to analyze the pressure transient 

data from a hydraulic fracturing experiment in granite and to estimate the in 

situ stresses as well as the fracture parameterse The experiment was conducted 

at Monticello in South carolina by the U. S. Geological Survey (Zoback, perse 

com, 1979). The hydraulic fracturing was performed at a depth of approximately 

300 m below surface over an interval 3 m. An oil-water mixture with a viscos= 

ity of 2.35 x 10-3 kg/m.sec (2.35 cp) was used as the injecting fluid. The 

well was of 0.1524 m (6 inches) diameter and communicated with surface injec­

tion equipment through a .0508 m (2.0 inches) diameter tubing. The actual 

experiment consisted of several injection cycles separating shut-in and bleed­

off periods. For illustrative purposes, the observed injection rates and 

injection pressures are given in Fig. 13. 

Numerical simulation of the hydraulic fracturing process requires the 

modeling of the energy build-up in the well itself, prior to the initiation 

of the fractures as well as the propagation of the fracture with time. The 

former aspect requires the treatment of the well as a volume element of the 

flow region and the latter requires an ability to handle time-dependent geom­

etry, based on fracture extension. While the wellbore aspect is quite easily 

handled in the standard IFD formulation, appropriate criteria had to be incor­

porated into the algorithms to extend the fracture. Palen (1980) used two 

criteria to extend the fractures; (a) that the fluid pressure near the tip of 

the fracture be in excess of the least principal stress in the horizontal 

plane and (b) there be enough potential energy in the system to create new 

fracture surface to overcome the strength of the rock at the fracture tip. 
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Assuming the fracture to grow in the shape of a "penny", and by adjusting ini­

tial fracture aperture, fracture compressibility, minimum in situ stress, and 

fracture toughness, the fit given in Fig. 14'was obtained. Independent esti­

mates by Zoback (pers. com., 1979) suggests that the minimum principal stress 

estimated in the simulation closely matched Zoback's estimate. 

5. Advective-diffusive transport in a fractured system with spherical 

particles. We shall now consider a general problem in which flow in the 

fracture as well as that in the rock matrix is considere~ in detail. Rather 

than the diffusion equation which has been of concern so far, we shall now 

consider an advective-diffusion problem. 

Consider a set of parallel, uniform fractures separated by a distance S 

(Fig. 15). Water enters this semi-infinite region through the fracture at 

Z = 0, at a constant velocity, Vf, and with a solute concentration 

C(Z = O,t) = c0e-Adt where Ad is a decay constant. The solute is transported 

by advection and longitudinal dispersion, DL, within the fracture and by diffu­

sion perpendicular to the fracture interface into the rock matrix. Rasmuson 

and Neretnieks (1980) studied this problem analytically by assuming the rock 

blocks to be replaced by spherical particles of the same surface to volume 

ratio. The problem then can be expressed by two partial diferential equations, 

one for advective-dispersion in the fracture, the other for radial diffusion 

into the spheres. These two are coupled by the transfer of solute between the 

fracture and the sphere and are subject to the boundary condition, 

C(Z = O,t) = c0e-Adt and the initial condition C = 0 everywhere in the 

flow region. 
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Rasmuson et al., (1980) simulated the same problem with the IFD program 

TRUMP in order to validate the program. The problem considered was subject 

to the following parameters, considered to be realistic for geologic disposal 

of high level radioactive wastes: 
-4 2 

S = 1m; DL = 1.35 x 10 m /s; K, volume 

equilibrium constant = 10
4 

m3;m
3

; D , diffusivity of rock matrix = 10-12 m
2
/sec; 

p 
-7 -5 vf, velocity of fluid in the fracture= 3 x 10 m/sec, 2b = 10 m, and r

0
, 

the radius of the spherical particle= 1.5 m. The decay constant used was 

Ad= 2.311 x 10-
9 

year-
1

, corresponding to a half-life of 3 x 10
8 

years. 

The problem was solved with 25 elements along the fracture with length 

varying from 15m (10 elements), 30m (10 elements) and 100m (5 elements), 

and each spherical particle divided 15 concentric elements with ~r = 0.1 m. 

In Fig. 16, the numerical solution obtained with TRUMP for a point in the 

fracture at z = 225 m is shown compared with the analytic solution. As can 

be seen, except for a slightly earlier breakthrough predicted by the numerical 

solution, the two solutions agree to within 1o-3 per cent for most of the 

period simulated. 

6. A double-porosity problem. The final illustrative problem is concerned 

with a fractured system idealized as an equivalent system of two interacting 

continua. To provide a physical feel for the illustration, we shall consider 

a system of 10 horizontal fractures, each with a uniform aperture of 1o-4 m 

and separated by matrix slabs 1 m in thickness. The aggregate thickness of 

the rock and fracture is 10 m. If cubic law is assumed, each fracture has 

an absolute penneability of kf = 8.333 x 10-
10 

m
2

• But if we assume that the 
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combined effect of the fractures can be replaced by a fracture continuum 10 m 

thick 8 then, the equivalent permeability of the fissured continuum amounts to 

k: = 8.333 x 10-14 m2• Similarly, if the fracture compressibility is assumed 

negligible, the specific storage of the fracture continuum is approximately 

s* = 1 x 10-
9 m-1 of water. It is reasonable to assume that the permeabil-

s,f 

* ity of the matrix may be small'er than kf by one to three orders of magnitude 

~s -1 
or more, while a value of 10 m is reasonable for the specific storage of 

the rock, S • 
s,r 

Let us now consider the mechanics of fluid transfer between the fissured 

and the matrix continua. Obviously, in the actual problem, water will drain 

vertically from the matrix slab upward and downward into adjoining fractures, 

with the centerline of the slab forming a line of symmetry. If we consider a 

thin prism of a matrix slab with cross sectional area A, then the amount of 

water draining from a slab to one adjoining fracture is given by 

k pg lj!r - ljlf 
Qf,r 

r 
• A • 

1l D 
f,r 

(38) 

k pg 
* r 

a (lj! - 1jJ ) 
1l r f 

(39) 

where a* = A/Df ,r and Df ,r 
= o. 5 m. Now since each slab is doubly-draining, 

the actual volume of water transfer from a given prism of the matrix continuum 

of thickness H to the prism of fracture continuum at the same location is 20 

times Qf and is equal to (k pg/1.!)(20a*)(lj! 
ur r r 

- 1jJ ). 
f 
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It is of interest here to compare a* with the geometric parameter often 

used to quantify the coupling term in the differential expression of the 

double-porosity model. For this, consider a prism of each medium at the same 

location, with cross sectional area A and height H, where H is the thickness 

of the media. Then, if we normalize a* with reference to bulk volume, we get 

a volume-normalized parameter related to a• That is, a has a dimension of 

reciprocal area and in the present case, a is related 1/(S)(H). 

In order to solve this interacting-continua problem using TERZAGI, a 

problem that has been studied by Barenblatt et al (1960), Warren and Root 

{1963), Odeh (1965), and many others, was chosen. The problem involves a well 

piercing the fractured-continuum that is areally infinite. The well is pro-

duced at a constant rate Q. As has been done by Warren and Root (1963), this 

problem can be analyzed in terms of four dimensionless groups, 

* 
* kp~ f 

T 
* 2 Df s s,f~rw 

(40) 

* 

* 
2~kfpg~~ 

p = D ~~ f 
(41) 

2 
k 

A r = ar w * 
kf 

(42) 

~d 

* 

w = * 
(43) 

s + s 
s,f s,r 



39 

The problem, involving 10 uniformly spaced fractures was studied using 

TERZAGI. A number of runs were made to study the effect of varying A, w, and 

the magnitude of wellbore storage capacity. In addition, one run was made 
., 

with spatially varying kf to consider "skin" effect near wellbore as well as 

increased fracture intensity beyond about 110m from the well axis. The 

results are summarized in three double-logarithmic plots, Figs. 17, 18, and 19. 

In Fig. 17 the double porosity results are compared with the Theis 

solution for three values of A. Increasing A implies increasing matrix perm-

eability. In the numerical model a 0.1 m radius well was assumed. In order 

to approximate the line source solution, the well was assumed to be packed-off 

and hence deriving storativity purely from water compressibility. In one case 

the well was assumed to have a fluctuating free surface. In the former case 8 

-6 3 the capacity of the wellbore was assumed to be 10 m of water per meter of 

head change while in the latter it was (0.1) 2~. As can be seen from Fig. 17 8 

the different cases clearly show effects of delayed drainage from the blocks 

in the range 10
1 < t 0 f < 10

6
, when the wellbore storage is small. It is, how­

ever, interesting to note that a realistic wellbore radius of 0.1 m with free 

fluid surface in the well gives a solution which totally masks all the effects 

that one could hope to see due to variable A or, equivalently, variable matrix 

permeability. 

Study of the double-porosity system by many workers has showed that the 

late-time behavior of the system is dominated by the combined storativities of 

the matrix and the fractured media while the intermediate-time behavior is in-

fluenced by w, the ratio of the fissure storativity to matrix storativity. In 
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-4 -2 
Fig. 18, two cases are compared, w = 10 and w = 10 • As should be expected, 

the late-time solutions for these two cases are distinct from each other. 

The final case shown in Fig. 19 was actually chosen to illustrate the 

generality of the numerical approach over the analytical approach. In a gen-

eral integral, numerical model, the system is described as a complex of several 

isolated continua, each interacting with the other. Insofar as the numerical 

approach is concerned, the double-porosity problem is a simplified special 

case which can be handled with ease. The case considered in Fig. 19 considers 

* the fissure-continuum to have radially varying kf, to simulate the existence of 

a low-permeability skin close to the well and to account for increased permea-

bility due to fracturing beyond about 100 m from the well. 

As can be seen from Fig. 19, the presence of the low-permeability skin 

-5 2 
causes much higher drawdowns than the A = 2 x 10 case, after t 0f ~ 10 • 

For r < 100 m, the two cases have identical parameters except for the skin. 

Detailed study of the printouts showed that the pressure transient extended 

beyond about 100m for t 0 f > 10
10

• * As a result, the variable kf flattens 

-5 markedly after that time and eventually crosses the A = 2 x 10 curve at 

CONCLUSIONS 

The Integral Finite Difference Method (IFDM) combines the power of an 

integral formulation with the simplicity of finite-difference gradients to 

constitute a powerful tool for simulating fluid flow in a variety of frac-

tured rock systems. The conventional finite-difference method is a subset of 
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IFDM and is included in it as a limiting case. The principal difference be­

tween the IFDM and the Finite-Element Method (FEM) lies in the ability of the 

latter to facilitate generalized gradient evaluations. A unique feature of 

the IFDM is that the information required to generate conductances between 

communicating volume elements are handled as input in a simple fashion. This 

feature provides unique advantages in handling heterogeneous systems such as 

fractured porous media with sharply-varying material properties. 

Insofar as simulating fluid flow in fractured systems is concerned, we do 

possess fairly sophisticated abilities. The chief problem that now confronts 

us is that of obtaining the relevant data from the field to provide input to 

the computational model. The information required to be handled for character­

izing all the discrete fractures of even a small system is too voluminous and 

difficult to obtairi. To minimize this problem one may desire to replace the 

discrete system with an equivalent macroscopically average system. While such 

equivalent systems are conceptually interesting, they have two disadvantages 

when one desires to utilize them in situations where a high degree of certainty 

is desired (e.g., radioactive waste isolation). The first is that very little 

is known as yet about the quantitative relationships that exist between the 

small- and large-scale parameters. Secondly, by their very nature, the macro­

scopic parameters possess inherent uncertainty or imprecision about them. 

This may suggest that these parameters cannot be expected to answer questions 

beyond a certain level of accuracy. In regard to waste isolation, the required 

degree of precision may be finer than the uncertainties associated with the 

macroscopic parameters. 
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